MAT8034: Machine Learning

Supervised Learning: Linear Regression
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Example: House pricing
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Slightly Richer Example

Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540




Definition

Input X (house data), output Y (price)
A hypothesis or a prediction function h: X — Y

A training set:{(x(1,y 1)), (xD, y D), (x™, y (W)}

(1)

n (D, xi ) represents the living area, x, represents the #bed room

Given a training set, our goal is to produce a good function h

= Will use h in the new data not in the training set



How to represent h?

= Simplest fit 5
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- h@ (x) - 80 + 91x1 + 023(:2
= \/ector notation?



How to learn the parameter?

= Least-square cost function

1 n . .
Jo = Eziﬂ(hg (x(l)) - y(l))z



Least Mean Square Algorithm

= Start from an initial 8, then repeatedly change to make Jg smaller

9(0) —p
1 .
04 =61 — o 55 9460 for j=0,...,d.
" Compute the derivatives... 7
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https://ludovicarnold.com/téaching/optimization/gradient—descent/ 8



Least Mean Square Algorithm

" Thus the update rule can be written as

4D = 00— 'S (ho(x) — y0) 5.
i=1

We write this in vector notation for j = 0,...,d as:

p(t+1) _ g(t) _ Z (he(xm) _ y(i)) ()
i=1



Batch gradient descent

" Consider the update rule

p(t+1) — p(t) _ Z (hg(x(i)) _ y(f)) ()
=1

" Repeat until converge
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Batch & stochastic gradient descent

Consider the update rule  g(t+1) =9 — )" (hg(X(i)) - y(i)) x{),

Repeat until converge i=1

A single update, we examine all data points
In some modern applications, n may be in the billions or trillions!
" E.g., we try to “predict” every word on the web

ldea: Sample a few points (maybe even just one!) to approximate
the gradient called Stochastic Gradient (SGD).

= SGD is the workhorse of modern ML, e.g., pytorch & tensorflow
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Stochastic minibatch

We randomly select a batch of B C {1,...,n} where |B| < n.

We approximate the gradient using just those B points as
follows (vs. gradient descent)

n

% 3 (hg(x(i)) _ yo')) MO %Z (he(x(.i)) _ y(i)) )
JEB

Jj=1

So our update rule for SGD is:

D) = 90 _ a5 Y (he(XU)) _ ym) )

JEB

NB: scaling of |B| versus n is “hidden” inside choice of ap.
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Stochastic minibatch v.s. Gradient descent

Recall our rule B points as follows:

D) = 0() — g 3 (he(x(j)) _ y(j)) )

JjEB

If |B| = {1,...,n} (the whole set), then they coincide.

Smaller B implies a lower quality approximation of the
gradient (higher variance).

Nevertheless, it may actually converge faster! (Case where the
dataset has many copies of the same point—extreme, but lots
of redundancy)
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Section summary

" Our goal was to optimize a loss function to find a good predictor

" We |learned about gradient descent and the workhorse algorithm
for ML, Stochastic Gradient Descent (SGD)

" We touched on the tradeoffs of choosing the right batch size
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Normal Equations
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Motivation

" Solve the least square exactly!
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Normal equation

" Hope to minimize J (@), find 8 such that Vj(8) = 0

VoI(6) = Vig(X0—5)7(X0-7)
Vo (X0)"X0 — (X0)Ty — 4" (X0) + 7 %)
Vo (67(XTX)0 — 7 (X6) — 77 (X0))

Vo (07 (X"X)0 — 2(X"9)"6)

N RN =N =

= (2X7X0 — 2X" )

= X'X0- X"y

= (X"X)"'Xx"y.

Some useful facts:
alb = bla

V. 0Tz = b

V.rl Ax = 2Ax
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Probabilistic interpretation
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A Justification for Least Squares?

" Given a training set {(x(), y()) for i =1,..., n} in which
x() € Rt and yl) € R.

» Do find § € R9*! st. 0 = argming .7, (hg(x{)) — y(1)2 in
which hg(x) = 67 x.

Where did this model come from?

One way to view is via a probabilistic interpretation (helpful
throughout the course).
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A Justification for Least Squares?

We make an assumption (common in statistics) that the data are
generated according to some model (that may contain random
choices). That is,

v — gTx() 4 20).

Here, (/) is a random variable that captures “noise” that is,
unmodeled effects, measurement errors, etc.

Please keep in mind: this is just a model! As they say, all

models are wrong but some models are useful. This model
has been shockingly useful.
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What do we expect of the noise?

What properties should we expect from (/)

Again, it's a model and () is a random variable:
» E[c()] = 0 - the noise is unbiased.

» The errors for different points are independent and identically
distributed (called, iid)

E[eel)] = E[eME[Y)] for i # .

E [(gmy] _ o2

Here o is some measure of how noisy the data are. Turns out,
this effectively defines the Gaussian or Normal distribution.

and

2
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Gaussian distribution

We write z ~ N (u, 0?) and read these symbols as

z Is distributed as a normal with mean p and standard

deviation o?.

or equivalently

P(u-l-0 £ X <Sp+l-0)= 6827 % PIXSpu+l0)=84,13 %
P(p-2-0 s XSpu+2-0)=9545 % PIXSp+20)=9772 %
P(u-30 s X<Spu+30)=9973 % PIX<Sp+30)9987 %
34,13% 3413%
u p+o p+2-0




Distribution of y

Recall in our model,
y =0T x0) 4 ) in which e() ~ A(0, 52).
or more compactly notation:
y | x1D; 0 ~ N(07 x, 02).

equivalently,

o\ 2T 202

. . () — xTH)2
p (y(,) !x(’);e) . exp{(y x"0)

}
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Likelihoods!

Intuition: among many distributions, pick the one that agrees
with the data the most (is most “likely”)

L(0) =p(y|X;0) Hp ()| (1) ) iid assumption

. (X( g — ))
oy
27 P 202

i—1 ¢
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Log Likelihoods!

" For convenience, use the Log Likelihood
(0) = logL(0)

nq (y) — gT )2
— 1 _
og E > exp ( =

f:l ] ( (4 — ng<¢))2)
= 0 exp [ —
ey = V2o £ 202

n

1 1 1

= nlog

2o 02 24
1=1

" Finding a 0 that maximizes the log likelihood
= What happens?
= Equivalent to minimizing %Z(y“) — e’

i=1

— (y(i) _ ng(i))%
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Takeaway

" “Under the hood,” solving least squares is solving a maximum
likelihood problem for a particular probabilistic model.

" Justify LMS as a very natural method (but not the only procedure)

= Worth noting: the choice does not depend on o
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Summary

" The regression problem for house pricing
" L MS

= Gradient descent

= Normal equation

= Justification for LMS
" Log likelihood
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