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Outline

§ Definitions
§ Batch & Stochastic Gradient
§ Normal Equations
§ Probabilistic interpretation
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Example: House pricing
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Slightly Richer Example
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Definition

§ Input 𝒳 (house data), output 𝒴 (price)
§ A hypothesis or a prediction function ℎ:𝒳 → 𝒴
§ A training set: 𝑥 ! , 𝑦 ! , (𝑥 " , 𝑦 " , … , (𝑥 # , 𝑦 # )}

§ 𝑥 ! : 𝑥!
! represents the living area, 𝑥"

! represents the #bed room

§ Given a training set, our goal is to produce a good function ℎ
§ Will use ℎ in the new data not in the training set
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How to represent ℎ?

§ Simplest fit

§ ℎ$ 𝑥 = 𝜃% + 𝜃!𝑥! + 𝜃"𝑥"
§ Vector notation?
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How to learn the parameter?
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§ Least-square cost function
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Least Mean Square Algorithm

§ Start from an initial 𝜃, then repeatedly change to make 𝐽$ smaller

§ Compute the derivatives…

8https://ludovicarnold.com/teaching/optimization/gradient-descent/



Least Mean Square Algorithm

§ Thus the update rule can be written as 
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Batch gradient descent

§ Consider the update rule

§ Repeat until converge
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Batch & stochastic gradient descent

§ Consider the update rule
§ Repeat until converge

§ A single update, we examine all data points
§ In some modern applications, n may be in the billions or trillions!

§ E.g., we try to “predict” every word on the web

§ Idea: Sample a few points (maybe even just one!) to approximate 
the gradient called Stochastic Gradient (SGD).
§ SGD is the workhorse of modern ML, e.g., pytorch & tensorflow
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§

§

§

§

Stochastic minibatch
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Stochastic minibatch v.s. Gradient descent

§

§

§

§

§

§
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Section summary

§ Our goal was to optimize a loss function to find a good predictor
§ We learned about gradient descent and the workhorse algorithm 

for ML, Stochastic Gradient Descent (SGD)
§ We touched on the tradeoffs of choosing the right batch size
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Normal Equations
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Motivation

§ Solve the least square exactly!
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The matrix form
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Normal equation

§ Hope to minimize 𝐽(𝜃), find 𝜃 such that ∇𝐽 𝜃 = 0
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Some useful facts: 



Probabilistic interpretation
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A Justification for Least Squares?

§

§
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A Justification for Least Squares?
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What do we expect of the noise?
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Gaussian distribution
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Distribution of y

24



Likelihoods!

§ Intuition: among many distributions, pick the one that agrees 
with the data the most (is most “likely”)
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Log Likelihoods!

§ For convenience, use the Log Likelihood

§ Finding a 𝜃 that maximizes the log likelihood
§ What happens?
§ Equivalent to minimizing 
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Takeaway

§ “Under the hood,” solving least squares is solving a maximum 
likelihood problem for a particular probabilistic model.

§ Justify LMS as a very natural method (but not the only procedure) 

§ Worth noting: the choice does not depend on 𝜎
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Summary

§ The regression problem for house pricing
§ LMS

§ Gradient descent
§ Normal equation

§ Justification for LMS
§ Log likelihood
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